
for Renewable Energy

Fe

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINE

Tonny Brink Nordic Folkecenter for Renewable Energy

7th International Conference on Small & Medium Wind Energy 21 September 2022

for Renewable Energy

The Nordic Folkecenter for Renewable Energy

- NGO founded in 1983
- Focus: Renewable Energy
- Bridge between education and industry
- Well known at international level
- Multi-cultural and multi-disciplinary environment
- Has hosted hundreds of interns, professors, researchers from different fields and from all over the world
- 6000+ visitors/year (1,7 mio. Online)

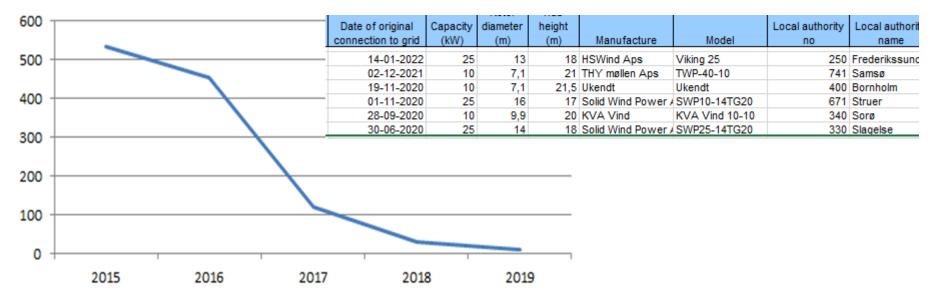
Goal: Favour the transition towards a 100% renewable energy society

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

6

Test Site Location & Collaborators

Danish Legislation of 30 November 2020 defines three categories of household windmills (m² swept area):


- 1. Below 5 m^2
- 2. Up to 40 m²
- 3. Up to 200 m²
- 4. Maximum 25 m to blade tip
- 5. Maximum 25 kW generator size
- 6. To be installed nearby existing buildings (20 25m)
- 7. To be installed private households for self-supply in rural areas

IEC 61400-2 & IEC 61400-22 / IECRE OD554

Small Wind DK

- Market Update 5 Grid connected Wind Turbines in 2020
- Generel Assembly White Book on Stupid Legislation
- Behind the meter market Electricity Prices are Sky High in Denmark
- Energy corropertives

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

for Renewable Energy

Year/Month

Fe

EUR/MWh		DKK/MWh		
	DK1		DK1	
2021	88,14	2021	655,48	
2020	24,98	2020	186,18	
2019	38,49	2019	287,39	
2018	44,05	2018	328,32	
2017	30,08	2017	223,79	
2016	26,67	2016	198,55	
2015	22,90	2015	170,75	
2014	30,67	2014	228,62	
2013	38,98	2013	290,67	
2012	36,33	2012	270,45	
2011	47,96	2011	357,32	
2010	46,49	2010	346,20	
2009	36,05	2009	268,42	
2008	56,43	2008	420,70	
2007	32,40	2007	241,37	
	DK1		DK1	

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

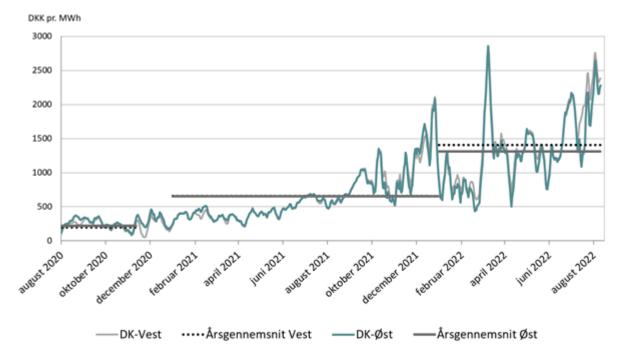
Small Wind Test and Lab

2010/1111				
	DK1		DK1	
22 - Aug	456,75	22 - Aug	3 397,77	
22 - Jul	275,04	22 - Jul	2 046,91	
22 - Jun	214,43	22 - Jun	1 595,24	
22 - May	171,86	22 - May	1 278,64	
22 - Apr	163,64	22 - Apr	1 217,25	
22 - Mar	235,78	22 - Mar	1 754,15	
22 - Feb	113,12	22 - Feb	841,70	
22 - Jan	117,99	22 - Jan	877,93	
21 - Dec	189,35	21 - Dec	1 408,00	
21 - Nov	141,80	21 - Nov	1 054,57	
21 - Oct	116,90	21 - Oct	869,72	
21 - Sep	125,36	21 - Sep	932,21	
21 - Aug	82,79	21 - Aug	615,69	
21 - Jul	80,00	21 - Jul	594,97	
21 - Jun	73,72	21 - Jun	548,21	
21 - May	54,31	21 - May	403,83	
21 - Apr	47,97	21 - Apr	356,72	
21 - Mar	45,11	21 - Mar	335,42	
21 - Feb	47,26	21 - Feb	351,47	
21 - Jan	50,21	21 - Jan	373,47	
20 - Dec	34,51	20 - Dec	256,82	
20 - Nov	23,75	20 - Nov	176,87	

20 - Oct

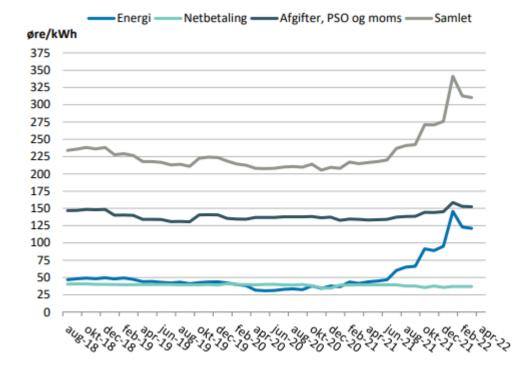
191.61

DKK/MWh


EUR/MWh

20 - Oct

25.75


Figur 3: Elprisen

Anm.: Data er spotpriser, der er udglattet til syv dages gennemsnit, sidste observation er 10. august 2022. Kilde: Data er hentet fra Energinet, der baserer sig på data fra Nord Pool, EEX, Nasdaq OMX og DI-beregninger

Kilde: Elpris.dk, Energinet, Skatteministeriet samt Forsyningstilsynets egne beregninger.

Technical requirements for connection of generating power plants to the LV grid. Version 1.2.

for Renewable Energy

C

Danish Energy Agency - Positiv List for Grid Connection

ENERGI				List of grid-c	onnected wi	nd turbines which cor	nply wit
Manufacturer	Designation	Certificate number from RisøDTU	Version	Power AC	No. of phases	Approval	E
[Name]	[Type]		[Rev. / ver]	[kW]	[no.]	[date]	
HSWIND	Viking VS10	DTU 2016-5 TC-B		10	3	23.june 2017	
	Viking VS25	DTU 2016-4 TC-B		25	3	23.june 2017	
Ryse Energy							
	G-11-RfG-DK			11	3	17 June 2022	
•	•			•			
Solid Wind Power	SWP10-16TG20	DTU 2019-1 TC-A		10	3	26 June 2020	
KVA Wind Int.	VFXG46-046S1			15	3	4 September 2020	
				-	-	-	-
Thy Windpower ApS	TWP 6-40-F3			6	3	11 December 2020	
	TWP 10-40-F3			10	3	12 February 2021	
Standards							

*Note	The expiry date is when a new techincal regulation is published or a when the wind turbine is updated (new version or revision)
Note	A wind turbine is only approved as an electricity-generating unit
Note	NTR = Next Technical Revision (Future)

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

for Renewable Energy

re.

Price ex. Vat 740.000 DKK

412.000 DKK 436.000 DKK

383.000 Dkk 587.000 Dkk Yearly Expected Energy Production 65.000 – 90.000 Kwh

> 12.000 – 18.000 Kwh 18.000 – 30.000 Kwh

12.000 - 15.000 Kwh 30.000 - 40.000 Kwh

Ryse Energy

THYmøllen

969.000 DKK

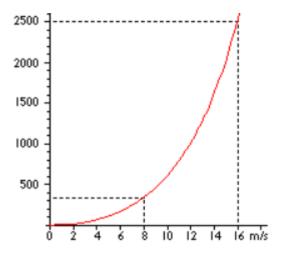
60.000 - 120.000 Kwh

*Service Cost

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

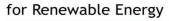
400 watt Procure

Delivered in a box - ready for installation


2 kW Proven

Wind speed is not linear with Kw

- Watt/m2=1/2 x 1,225 x m/s³
- Wind speeds in 3rd potency * Betz
- $2m/s=5w \times 0,4 = 2w$
- 4m/s = 39w x 0,4 = 15 w
- 6m/s=132w x 0,4 = 52 w
- 8m/s=313w x 0,4 = 125 w
- 10m/s=612w x0,4 = 244 w



Grid connected or island, it almost gives itself

- Is there the possibility of grid connection and the price relevant, grid connection
- If there is no grid, then island operation

DANISH ASSOCIATION for Small and Medium Wind Turbines

- HUSUM 2021- Hamburg 2022
- Rep. Members of Small Wind Association

for Renewable Energy

Fe

for Renewable Energy

• Blade Testing

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

- Hundborg
- AMarkWind

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

Autonomous wind power: In operation at the Folkecenter since 1996

Dansk Standard, S-588, TC88, IEA – Task 41

Strategy for S-588 Vindenergisystemer

Purpose

To ensure that TC 88/S-588 initiates and participates in all standardization projects related to Wind Energy

Active participation in Technical areas

- IEC TC 88 Wind energy generation systems
- <u>CLC TC 88 Wind Turbine</u>
- IECRE The IEC System for Certification to Standards Relating to Equipment for Use in Renewable Energy Applications
- All Wind energy related projects under <u>IEC TC 14 Power transformers</u>
- All Wind energy related projects under <u>ISO TC 60 Gear</u>
- All standardisation projects related to Wind energy in other Technical Committees.

Denmark has since 2013 held the secretariat for IEC TC 88 Wind energy generation systems

Kilde:Dansk Standard

for Renewable Energy

Tonny Brink, Nordic Folkecenter for Renewable Energy

Educated as a Marine Engineer, he is Folkecenter's Chief Technical Director. He has got 35 years of experience in the international wind industry, working for Vestas Wind Systems A/S and Folkecenter. This has provided him with broad knowledge in service and maintenance site management and construction and operational project management. Hold positions and responsibilities: Travel Technician, Site Manager, Logistics Coordination, Area Service Manager, Technical Support Dept., People Manager, Technical After Sales/Customer Reporting, WTG Performance and Diagnostic analysis, Communication, Planning, Controlling, Technology Transfer, Project Management and Execution Leader.

www.smallwind.dk or www.smallwind.eu

DANISH TEST AND RESOURCE CENTRE FOR SMALL WIND TURBINES

Vísítors are always welcome!

