Agroforestry in Africa for Sustainability and Climate Change Mitigation

Anne Mette Lykke
Department of Bioscience,
Aarhus University, Denmark

AU research projects in Africa

ENRECA Danida

Capacity building in biology

SEREIN Danida

Multidisciplinary environmental research

New national park in Niger WWF

Consultancy for Aïr Ténéré National Park

SUN EU FP6

Research on sustainable use of natural vegetation

UNDESERT EU FP7

Research on mitigation of desertification

BSU Danida

Capacity building in natural sciences

SHEATHE Danida

Research on pollution related to gold digging and e-waste

TREEFOOD Agropolis, Cariplo, Daniel & Nina Carasso

Research on food security

QUALITREE Danida

Research on native oil trees

Arlomom

Local trees for a better world

- Part of UNDESERT EU project
- Pilot project: application of research results

Agroforestry

Tree planting

Assisted natural regeneration

ARLOMOM planting systems

40 ha planted by 30 men, 9 women groups

Intercropping

x	Species	Proportion	No. of
x x x x x x		(%)	trees
x x x x x x	Faidherbia albida	30	11
x x x x x x x x	Cordyla pinnata	30	11
x x x x x x	Tamarindus indica	10	4
	Detarium senegalensis	15	5
	Detarium microcarpum	15	5
	ΤΟΤΔΙ		36

Boundary planting

×	x >	х	×	x	х	хх	* ×	Species	Proportion	No. of
							×		(%)	trees
							x x	Cola cordifolia	20	8
							x	Pterocarpus erinauceus	25	10
							x x	Khaya senegalensis	25	10
x	x >	х	x	x	x	х х	×	Tamarindus indica	20	8
								Adansonia digitata	10	4
								TOTAL		40

Afforestation/reforestation

* * * * * * * * * * * * * * * * * * *	Species	Proportion	No. of
******		(%)	trees
* * * * * * * * * * * * * * * * * * *	Pterocarpus erinauceus	20	80
X X X X X X X X X X X X X X X X X X X	Khaya senegalensis	10	40
* * * * * * * * * * * * * * * * * * *	Parkia biglobosa	30	120
******	Detarium microcarpum	10	40
	Detarium senegalensis	10	40
	Daniella oliveri	5	20
	Neocarya macrophylla	15	60
	TOTAL		400

Assisted natural regeneration

* * * * * * * * *	Species	Enrichment	Proportion	No. of
* * * * * * * * * *	expexted	species	(%)	trees
x x x x x x x x x x x x x x x x x x x	Combretum	Detarium microcarpun	n 20	20
* * * * * * * * * * * * * * * * * * *	Ziziphus mauritiana	Neocarya macrophylla	20	20
x x x x x x x x x x	Terminalia sp.	Cordyla pinnata	20	20
	Pterocarpus erinauceus	Saba senegalensis	20	20
	Prosopis africana	Detarium senegalensis	20	20
	Daniella oliveri	TOTAL		100

Local knowledge

Preliminary investigations

- Meeting authorities & chefs
- > Qualitative interviews
- > Vegetation investigations

Quantitative interviews

- > 120 informants, 11 villages
- > 55 tree species
- > Quick & simple ranking
- → Most tree species are declining
- →Useful trees are most declining

Species	Abundance	Change	Use value	Planting interest
Adansonia digitata				
Parkia biglobosa				
Cordyla pinnata				
etc.				

Planting interest – gender differences

Significant correlation between ranking by men and women

But women rank planting interest higher than men

Trees with high quality fruits of highest interest

- > Quality edible fruits
- > Edible fruits

Why native trees?

Improve livelihoods

- > Food security
- > Income security
- > Health
- > Use traditional wisdom
- > Biodiversity
- Medicine
- > Ecosystem resilience
- > Species conservation
- Climate change mitigation

Participatory approach

Many advantages

- > Profound local knowledge
- Selection of socially and economically important species
- > Leads to engagement
- Threatened

... and some disadvantages

- Climate change not considered
- › Biological key-stone forgotten
- Threatened might be forgotten
- Full potential of species not always known

Carbon sequestration

CO₂ in the atmosphere

CO₂ absorbed in trees via photosynthesis

CO₂ released from decomposition

Carbon certification

Plan Vivo

- Carbon sale at voluntary market
- Rates are paid up front
- > Socio-economic improvements count

Carbon payment

40 ha planted

> 30 men, 9 women groups

Carbon payment

- > 5500 tCO₂ over 30 years
- > 44000 € in total (8 €/tCO₂)

Agroforestry for food and carbon in Africa

Many good reasons

- Labor in Africa is cheap
- Jobs in remote areas
- Output from crops is low
- Simple and low-cost
- > Food, health, income
- > Empower women
- Natural benefits
- Climate benefits

Win-win-win: Sustain ecosystem services, human wellbeing and climate mitigation at the same time

Complications in agroforestry

- Long term
- Continuity
- > Labour intensive
- Constant follow up
- > Risks (fire, drought, browsing)
- Lack of means for action
- Cost a bit to establish
- Good collaboration

Optimal to establish with wood-conserving installations

Conclusion

Agroforestry for food and carbon has great potentials

An obvious way to mitigate climate change and enhance nature and local livelihoods

-

Establishment is not simple
Coordination with woodconserving initiatives needed

Arlomom

Local trees for a better world

Search for ARLOMOM on YouTube

Thanks to colleagues at

- University of Cheikh Anta Diop,
 Dakar, Senegal
- Bioclimate Research and Development, Edinburgh, UK

Thank you for your attention

