
The New role of the Farm: from Agriculture to Energy

Daniele Pagani

Sustainable Mobility, Nordic Folkecenter for Renewable Energy

How can we increase our energy production and at the same time reduce our CO2 emissions?

28.08.2019

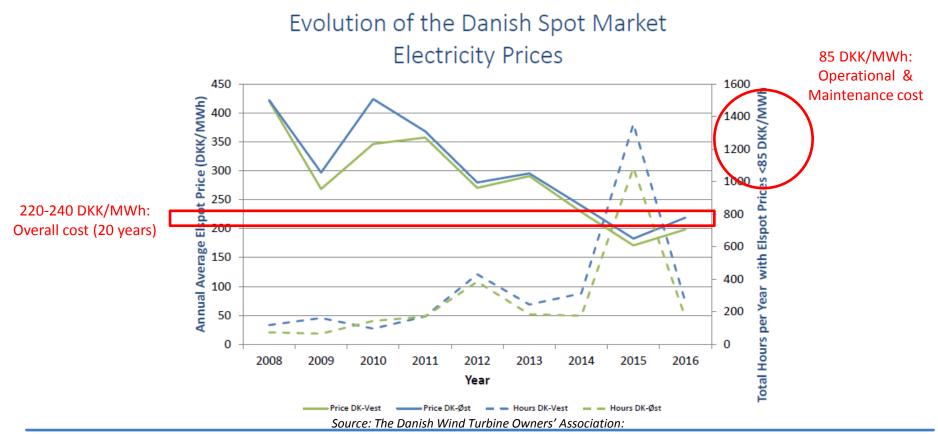
Source: Energinet.dk

Background of the Study

«Danish Wind turbine owners get german money for stopping the production» *Finans.dk*

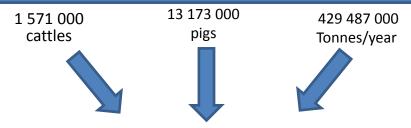
200 Million Euro to stop 37 GWh November 2015

Electrical resistance burning 15 kW every hour



climatetechwiki.org

Background of the Study

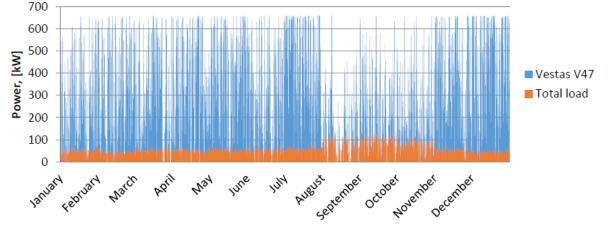


Background of the Study

Picture removed due to copyright

Pictures removed due to copyright

- 196+ Biogas plants installed;
- 95,8 MW installed (2015);
- 1.14 TWh/year produced (2010);



Wind turbine: Vestas V47, 660 kW

- Average production: 1.8-2.0 GWh/year;
- Installation: 2000;
- Expected lifetime: Extra 14-15 years;

Biogas installation:

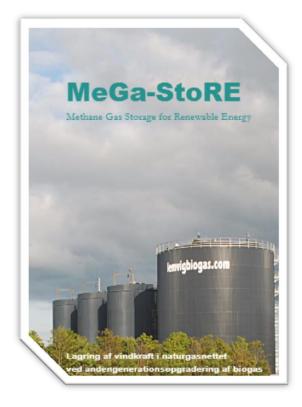
- 6000 m³/day (2 digesters x 3000 m³);
- 65% CH₄ content;
- Approx. 4 GWh/year production;
- Input: 70 tons/day of waste;

Vestas V47 power output and load variation

Time

Vestas 660 kW, max output: 2.2 GWh/year @ 0.256 DKK/kWh = 563,200 DKK/year @ 0.180 DKK/kWh = 396,000 DKK/year

Biogas installation, max output: 2,190,000 m³/year Current production (2015): 3.58 GWh/year @ 1,23 DKK/kWh = 4,403,400 DKK/year


Sabatier Reaction:

$$CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O_2$$

Increase CH_4 up to 50% = 2x CH_4 quantity

More technical information:

- <u>http://methan.dk</u>
- <u>http://www.lemvigbiogas.com/MeGa-</u> <u>stoREfinalreport.pdf</u>

The technology is there, but...

- Theoretical minimum electricity consumption: 2,94 kWh/Nm³;
- Standard electricity consumption: 4,5-6,0 kWh/Nm³;

USE SURPLUS ELECTRICITY!

 Methane content [%]	MAN+Deutz Consumption [m ³]	Excess [m³/year]	Total AEP [kWh]	Cash inflow [DKK/year]	P _{out} new engine [kW]	
65.0	2,452,707.85	0.00	4,642,980.93	5,710,866.55	0.00	
67.5	2,361,866.82	0.00	4,811,443.55	5,918,075.56	0.00	
70.0	2,277,514.44	0.00	4,979,906.16	6,125,284.58	0.00	
72.5	2,198,979.45	0.00	5,148,368.78	6,332,493.60	0.00	
75.0	2,125,680.14	64319.86	5,331,204.89	6,557,382.02	18.59	
77.5	2,057,109.81	132890.19	5,515,980.75	6,784,656.32	39.68	
80.0	1,992,825.13	197174.87	5,700,756.60	7,011,930.62	60.77	
82.5	1,932,436.49	257563.51	5,885,532.46	7,239,204.92	81.86	
85.0	1,875,600.12	314399.88	6,070,308.31	7,466,479.22	102.96	
87.5	1,822,011.55	367988.45	6,255,084.16	7,693,753.52	124.05	
90.0	1,771,400.12	418599.88	6,439,860.02	7,921,027.82	145.14	
92.5	1,723,524.44	466475.56	6,624,635.87	8,148,302.12	166.24	
95.0	1,678,168.53	511831.47	6,809,411.73	8,375,576.42	187.33	
 97.5	1,635,138.57	554861.43	6,994,187.58	8,602,850.72	208.42	
99.0	1,610,363.74	579636.26	7,105,053.09	8,739,215.30	221.08	

$$WT1_{revenue} = 1,533,671.12 \frac{kWh}{year} \cdot (0.023 + 0.157) \frac{DKK}{kWh} \rightarrow 276,061 \frac{DKK}{year}$$

Before upgrading

 $Biogas_{revenue} = 4,637,966.69 \frac{kWh}{year} \cdot 1.23 \frac{DKK}{kWh} \rightarrow 5,704,699 \frac{DKK}{year}$

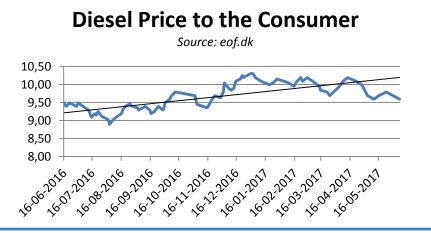
5,980,760 DKK/year

$$WT1_{revenue} = (8,760 - 2,863)h \cdot 175 \ kW \cdot 0.18 \frac{DKK}{kWh} \cdot 68\% \rightarrow 126,300 \frac{DKK}{year}$$

 $Biogas_{revenue} = 6,809,411.73 \frac{kWh}{year} \cdot 1.23 \frac{DKK}{kWh} \rightarrow 8,375,576 \frac{DKK}{year}$

8,501,876 DKK/year

+42.15%


The Transport Scenario: Fleet

• 3 x Volvo trucks. Consumption: 1.8 km/L. Km: 50,000/year

803,333 DKK/Year

• 14 x tractors + additional farming machines

Picture removed due to copyright

Picture removed due to copyright

The Transportation Scenario: Fleet

- No need for quick filling station, meaning considerable reduction in costs;
- Being a fleet, it is possible to charge the vehicles in the night;
- Daily average mileage per vehicle: 137 km;
- Current consumption: 77 L/day/vehicle;
- Total current consumption: 231 L/day;
- Needed gas/day: 231 m³;

2 x 143 m³/day time-fill stations Ca. 100,000 \$

Source: nyserda.ny.gov

Comparison

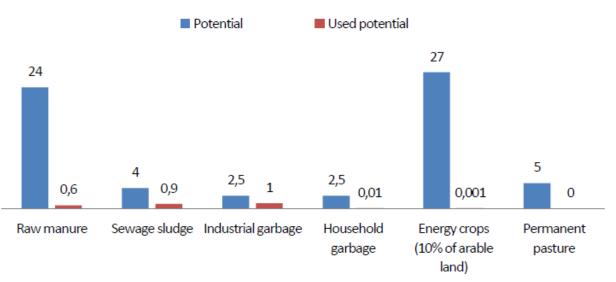
Not Upgrading

Wind: 2,100,000 kWh/year @ (0.023+0.157)Dkk

378,000 dkk/year

Biogas 4,642,980 (65%) @ 1.23 DKK

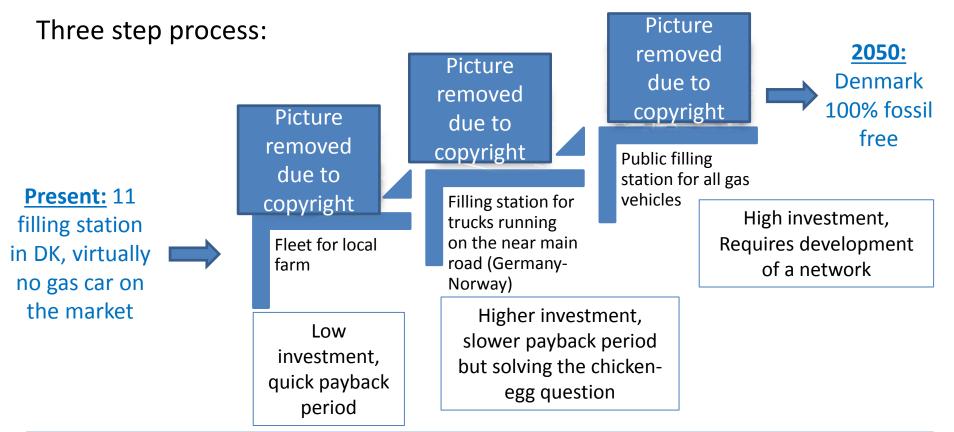
5,710,865 dkk/year


Total: 6,088,865 DKK/year 917,494 \$/year

Upgrading to 99% CH ₄	<u>Upgrading to 99% CH₄ + transport</u>		
Wind: 114,918 dkk/year	Wind: 114,918 dkk/year		
Biogas	Biogas 6,767,307(99%) @ 1.23 DKK		
7,045,735(99%) @ 1.23 DKK	8,323,787 dkk/year		
8,666,254 dkk/year	Savings from fuel		
	803,330 dkk/year		
Investment	Investment		
2.730.250 dkk	3,098,803 dkk		
Total: 6,050,922 Dkk (Year 0) 8,781,172 Dkk/year 1.32 M\$/year	Total: 6,143,232 Dkk (Year 0) 9,242,035 Dkk/year 1.39 M\$/year		

Impact on Denmark

Potential energy production through biogas (in PJ/year)


Source: "Biogas in Denmark – a potential energy source with benefits for the environment", p.6,

Gothenburg Veriet of Aarhus Odense Odense Veriet of Aarhus Odense Veriet of Aa

18.05 TWh/year potential with current technology

Recommendations

Picture removed due to copyright

Daniele Pagani Sustainable Mobility, dp@folkecenter.dk

Thank you!

Nordic Folkecenter for Renewable Energy Nordic Folkecenter for Renewable Energy www.folkecenter.net

Nordisk Folkecenter